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THE TROTTER-KATO THEOREM AND 
APPROXIMATION OF PDEs 

KAZUFUMI ITO AND FRANZ KAPPEL 

ABSTRACT. We present formulations of the Trotter-Kato theorem for approx- 
imation of linear Co-semigroups which provide very useful framework when 
convergence of numerical approximations to solutions of PDEs are studied. 
Applicability of our results is demonstrated using a first order hyperbolic equa- 
tion, a wave equation and Stokes' equation as illustrative examples. 

1. INTRODUCTION 

In this paper versions of the Trotter-Kato theorem [8], [15] for approximating a 
linear C0-semigroup T(t) on a Banach space X are derived, which are useful for 
studying convergence of numerical approximations of solutions to partial differential 
equations. Our study is motivated by the version of the Trotter-Kato theorem 
discussed in [11, Section 3.6]. The goal is to provide a general approach, which is 
flexible enough to cover a variety of approximation schemes for infinite dimensional 
systems. Of course it is not possible to get precise error estimates at this level of 
generality. In order to get those one usually has to exploit the special structure of 
a system, what we shall demonstrate in a few situations. 

In Section 2 we present a version of the Trotter-Kato theorem which is standard 
except for the fact that the state space on which the semigroup is defined is a closed 
proper subspace of an ambient Banach or Hilbert space. The approximating spaces 
are isomorphic to subspaces of this ambient space but not necessarily of the state 
space. Furthermore, we present in this section error estimates for smooth initial 
data in the general case and also for analytic semigroups. In Section 3 we discuss 
possibilities to verify the basic assumptions of the Trotter-Kato theorem, i.e., how 
to establish the stability and the consistency property. Applicability of the results 
is demonstrated in Section 4 for a first order wave equation, a second order wave 
equation in one space dimension and Stokes' equation as illustrative examples. 

2. THE TROTTER-KATO THEOREM 

2.1. Statement and proof of the theorem. Let Z and X, be Banach spaces 
with norms 11 * 11, 11 * II,, n = 1, 2,.. ., respectively, and X be a closed linear subspace 
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of Z. On X a Co-semigroup T(.) with infinitesimal generator A is given. The 
goal is to construct approximating generators A, on the spaces X, such that the 
Co-semigroups Tn(.) generated by A, approximate T(.) in a sense which will be 
made precise below. We will make the following assumptions: 

For every n = 1, 2,... there exist bounded linear operators Pn : Z -* Xn and 
En : Xn 3- Z satisfying 
(Al) IlPnll < Ml, IlEnll < M2, where M1, M2 are independent of n, 
(A2) IlEnPnx-xll - O as n - oo for all x E X, 
(A3) PnEn = In, where In is the identity operator on Xn. 

Assumption (A2) is a consequence of each of the two equivalent statements in the 
Trotter-Kato theorem. Therefore when choosing the spaces Xn and the operators 
Pn, En one has to make sure that (A2) is also satisfied. However, (A2) need not 
be assumed explicitly in the theorem. In many situations one has X = Z, but 
Section 4.3, where we consider Stokes' equation, presents an example where it is 
advantageous to define the operators Pn, En first for an ambient space Z which 
contains the actual state space for the equation as a proper closed subspace. 

The general setting can be phrased in an equivalent way for subspaces of Z. In 
order to see this define the subspaces Zn of Z and the mappings 1rn : Z -* Zn by 

Zn = range En and 1rn = EnPn, n = 1, 2,. 

The subspaces Zn are endowed with the Z-norm. It is easy to see that the Zn 
are closed subspaces of Z and that 1rn are projections Z -* Zn, i.e., 7rn = 7rn 
and rangewrn = Zn. Furthermore, Tn(t) = EnTn(t)Pn Izn, t > 0, defines a Co- 
semigroup on Zn with infinitesimal generator An given by domAn = En dom An 
and An = EnAnPn lzn Assumption (Al) implies that there exists a constant 
M > 0 such that 

(B1) 7rn < KM, n = 1,2,... 

is true, whereas from assumption (A2) we get 

(B2) lim rn z = z for all z E X. 
n-*oo 

Note that by the uniform boundedness principle assumption (B1) is automatically 
satisfied if (B2) holds for all z E Z. In general we do not have Zn C X. See 
Section 4.3 for an example. If one has numerical approximation in mind, then the 
spaces Zn are finite dimensional, of course. 

Conversely, let Zn, n = 1, 2,... , be a sequence of subspaces of Z with projections 
1rn: Z -* Zn and canonical injections tn : Zn -* Z. We assume that (B1) and (B2) 
are satisfied. Then obviously assumption (B1) implies (Al) and (B2) implies (A2) 
for Xn = Zn, Pn = 1rn and En = tn. (A3) is trivially satisfied. 

The most frequent situation where the setting introduced at the beginning of this 
section occurs is when we start with a sequence of finite dimensional subspaces of 
Zn, dim Zn kn. For each subspace Zn we choose a basis zn,.. ., zn and define the 

mapping Pn: Zn -3X := Rkn by PnZ = (Cl, I ak(R)T for z = Ekj1I jzj E Zn. 
The norm on Xn is defined by x - pijx z. If we define the mappings 
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Pn: Z -3 Xn, En Xn -3 Z by 

PnZ = PnWrnZ, Z E Z, 

E,x =,pj IX) X E Xn, 

then assumptions (Al) - (A3) are satisfied. 
Before we state the Trotter-Kato theorem we introduce the following notation: 

A E G(M,w,X), M > 1, w E R, means that A is the infinitesimal generator of a 
Co-semigroup T(t), t > 0, satisfying IT(t)II < Mewt' t > 0. Of course, if A is the 
infinitesimal generator of a Co-semigroup, then A E G(M, w, X) for some M > 1 
and w E R. 

Theorem 2.1 (Trotter-Kato). Assume that (Al) and (A3) are satisfied. Let A 
resp. An be in G(M,w,X) resp. in G(M,w,Xn) and let T(t) and Tn(t) be the 
semigroups generated by A and An on X and Xn, respectively. Then the following 
statements are equivalent: 
(a) There exists a A0 E p(A) n n p(An) such that, for all x E X, 

I-En(Aoln-An)*1PnX-(Aol-A)-1xI 0 3 O as n . oo. 

(b) For every x E X and t > 0, 

IlEnTn(t)Pnx-T(t)xI -0 O as n - oo 

uniformly on bounded t-intervals. 
If (a) or (b) is true, then (a) holds for all A with Re A > w. 

Proof. If we set Zn = range En and 1rn = EnPn, n = 1, 2,. .., then the theorem is 
proved if we establish equivalence of the following two statements: 

(a) There exists a A0 E p(A) n nn,=1 p(An) such that, for all x E X, 

(AoiIn-An)-17rnAx-o(oI-A)-1xI -0 as n - oo. 

(b) For every x E X and t > 0O 

IlTn(t)7rnx-T(t)xI -0 O as n 3 oo 

uniformly on bounded t-intervals. 

For the rest of the proof we shall write Tn(t) and An instead of Tn(t) and An: 
respectively. It is no loss of generality if we assume that (a) holds for A0 0. 

a) We first show that (a) implies (b). For x E X we define 

en (t) = (Tn (t)7n - 7rT(t)) x, n = 1, 2, ... . t > 0. 

For x E domA, the function un(t) defined by 

Un(t) = An-len(t)) t > O, n = 1, 2, .... 

is in C1 (0, oc; Zn) and satisfies 

(2.1) un0 0An,n 
+ 7rnAnAT(t)x, 

where we have set 

A-1 - An-lrn. 

Indeed, An-Tn(t)rnX = Tn(t)A- wrnX is continuously differentiable on [0, oo), be- 
cause Aw-1rnX is in domAn, whereas An-wrnT(t)x is continuously differentiable, 
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because x E dom A and An-1 r is a bounded operator X -* Zn. An easy calcula- 
tion proves (2.1). 

From (2.1) we obtain by the variation of parameter formula that, for t > 0, 
x E domA, 

rt 
Ufl(t) j - (t-7)7rnAnAAT(T)xdTr. 

For x E dom A2 integration by parts implies 

un(t) = -A-A7rnAnAT(t)x + A7-Tn(t)7rnwnAx 

(2.2) + Aj j Tn(t - T)7rnAnA A2T(T)x dr, t > 0. n 

Here we have used AnTn(t-r)y d- Tn (t-r)y, y E Zn, and d T(r)x AT(r)x, 
x E dom A. From this representation of un (t) we obtain the error representation: 

en(t) = -7rnAnAT(t)x + Tn(t)7rnwnAx 

(2.3) ?+ Tn(t - 7)7rnTAnA2T(T)x dT, t > 0, x E dom A2. 

In order to prove limnO,0 en (t) = 0 uniformly for t in bounded intervals, we 
consider the terms on the right-hand side of (2.3) separately. For any T > 0 the 
set {T(t)Ax 0 O < t < T} is compact. Therefore we have 

7rnAnAAT(t)x - 0 as n - oo 

uniformly on [0, T]. For the second term on the right-hand side of (2.3) this is 
obvious, because IITn(t)II < Mew't, t > 0, n= 1,2,.... 

Since, for x E domA2, the set {A2T(r)x 0 O < r < T} is compact, we see that 
AnA2T(r)x - 0 as n - oc uniformly on [0, T]. Therefore also the integral on the 

right-hand side of (2.3) converges to zero uniformly on [0, T]. Thus we have proved 
that limnO,0 en(t) = 0 uniformly on 0 < t < T for any x E dom A2. By a standard 
density argument we see that this is true for all x E X (note that, by definition 
of en(t), there exists a constant co > 0 such that supo<t<T iien(t)l < coewT x 
x E X, n = 1,2, ... ). 

It remains to prove that 

lim w 7TrnT(t)x - T(t)x 0 uniformly on [0, T]. 
n-*oo 

By compactness of {T(t)x 0 O < t < T} we only have to prove limnO, wrnx = x for 
all x E X. For x E dom A we get (observing that ker(I - 7rn) = Zn) 

(2.4) 7rnX - X (7n - I)AnAx. 

This implies limnO, wrnx = x for x C dom A. The result for x C X follows by a 
density argument. 
b) Assume now that (b) holds and that Re A > w. Then 

(AIn - An)-T1rnx - (Al-A)-1xfl < e- Re IlTn(t)rnx - T(t)xII dt. 

The right-hand side of this inequality tends to zero as n -* oc by (b), the choice of 
A and Lebesgue's dominated convergence theorem. DH 
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Remarks. 1. The proof of Theorem 2.1 as given above is a slight modification of 
Kato's proof putting more emphasis on the representation of the error en(t) which 
will be useful in the next subsection. 

2. The assumption A, E G(M, w, X,), n = 1,2,..., or equivalently IITn(t)IIn < 

Mewt n = 1, 2, .. ., usually is called the stability property of the approximations, 
whereas statement (a) is called the consistency property of the approximations. 
With this terminology the Trotter-Kato theorem essentially states that, under the 
assumption of stability, consistency is equivalent to convergence (as characterized 
in statement (b)). 

Using the uniform boundedness principle and the standard proof for the fact that 
any Co-semigroup T(.) satisfies an estimate of the form JIT(t) I < Mewt, t > 0, it is 
easy to see that on the other hand convergence implies stability (and consequently 
also consistency). Compare Theorem 4.4 in [10]. 

3. Consider the setting used in the proof of Theorem 2.1. With the operators A 
and An, n = 1, 2, .. ., we can associate the steady state problems 

(2.5) Au=Aou-y, yEX, 

on X and 

(2.6) Anun AOUn -7rnY 

on Zn. The consistency hypothesis (a) just means that these steady state problems, 
for all y E X, have unique solutions u resp. un which depend continuously on y and 

(2.7) lim un =U. 

Indeed, the assumptions on the solvability of the steady state problems are equiv- 
alent to A0 E p(A) n In=l p(An) and (2.7) is just the strong convergence of the 
resolvent operators, because u = (AOI - A)-y and Un = (AoIn - An)-rny. 

In view of these considerations the Trotter-Kato theorem states that, under the 
assumption of stability, convergence of the solutions of the steady state problems 
associated with the semigroup generators implies convergence of the semigroups. 
This point of view was stressed in [10], where it was also shown that convergence 
rates are also preserved. We shall address this question in the next subsection. 

4. The error function en (t) is continuously differentiable on [0, oo), if x E dom A 
and wrnx E dom An, which is certainly the case if the An's are bounded. The most 
common situation where the An's are bounded occurs when the spaces Xn are finite 
dimensional. Then en (t) is the solution of 

-n = Anen + An7rnAnAT(t)x, t > 0O 
(2.8) een(0) = 0. 

This implies 

rt 

(2.9) en(t) jAnTn(t - T)7rnAnAT(T)xdT, t > 0. 

From this representation we can get (2.3) by integration by parts directly provided 
x E dom A2. Thus the introduction of Un (t) is not necessary in cases where en (t) 
is differentiable. 
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5. A somewhat different proof of Theorem 2.1 can be given using the approach 
followed in [10]. Let the setting be that used in the proof of Theorem 2.1 and 
define the "elliptic" projections qn: dom A -) Zn by 

qn= A[17rnA, n = 1, 2... 

For x E dom A2 we introduce the error 

fn(t) = Tn(t)qnx - qnT(t)x, t > 0, 

which is continuously differentiable. This follows from qnX E dom An and qnT(t)x 
A-[1irnT(t)Ax. We have fn(0) = 0 and 

fn(t) = Anfn(t) + 7rn(I - qn)T(t)Ax, t > 0. 

This gives 

fn (t) Tn (t - s)7rn (I - qn)T(s)Ax ds 

and 
t 

T(t)x - Tn(t)qnx = (I - qn)T(t)x - jTn(t-s)7rn(I-qn)T(s)Axds, t > 0. 

Observing that, for y E domA, we have (I - qn)y = (A-1 - Aw-rn)Ay we see that 
the same arguments used in the proof of Theorem 2.1 give 

lim Tn (t) qn X = T (t) x, x E dom A, 
n-*oo 

uniformly on bounded t-intervals. In order to get Tn(t)wrnx - T(t)x uniformly on 
bounded t-intervals for any x E X one has to choose a sequence (Xk) c dom A with 
Xk -* x and to apply the standard arguments to the estimate 

T(t)x - Tn(t)7rnJxJ < ||T(t)(x - Xk)JJ + 11(T(t) - Tn(t)qn)xkJJ 

+ ? Tn(t)(qnXk - 7rnX)JJ 

< Mewt llX -xk ?| + 11(T(t) - tn(t)qn)Xk 

+ MeWt (qlqnXk -Xk + |lXkW- nXk 1 + l17rnF| ||Xk -XI)- 

2.2. Error estimates for smooth initial data. The proof of the Trotter-Kato 
theorem as given in the previous subsection offers also the possibility to obtain 
error estimates for the approximations. However, because of the generality of The- 
orem 2.1 we cannot expect to get error estimates which are sharp in specific situa- 
tions. In order to get sharp estimates one has to exploit the special structure of the 
problem at hand. See for instance [2] for parabolic equations and [9], [5] for delay 
equations of retarded type. In the following let 11 * 11domkA denote the graph norm 
on domAc, a > 0. 

Proposition 2.2. Let the assumptions of Theorem 2.1 be satisfied and, for any 
AO E p(A) n nn= p(An), set An(Ao) = En(AoIn - An)P - (AoI - A)1 Then 
the following is true: 

a) For any T > 0 and any a > 0, there exists a constant y = y(T, a) > 0 such that 

IlEnTn(t)Pnx - T(t)xJJ <_ 71 An(Ao)||L(domA't,X)|lXlldomA-+2 0 <t <T, 

for allxEdomA?+2 and n=1,2.... 
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b) If, in addition, the semigroup T(.) is analytic, then for any T > 0, E > 0 and 
a > 0, there exists a constant -y = -y(T, E, a) > 0 such that 

I|EnTn(t)Pnx - T(t)xII <? y1|An(Ao)IL(domA,X) lXlldomA+l+?E 0 < t < T, 

for all x E domA'+'+' and n = 1, 2,. . . 

Proof. As in the proof of Theorem 2.1 we can assume without restriction of gen- 
erality that 0 E p(A) n nn=I p(An). Furthermore, for the proof we adopt the 
same setting as in the proof of Theorem 2.1 and write again Tn(t) and An instead 
of Tn(t) and An, respectively. Correspondingly we also set An = A-1 -A-rn, 
n = 1, 2,... . In the following 'const.' always denotes a positive constant which 
does not depend on x or t (in the given sets) and may have different values at 
different occurrences. 

The proof for part a) is straightforward, estimating the terms on the right-hand 
sides of (2.3) and (2.4). We have to observe that the restriction of the semigroup 
T(.) to (dom Ac, dom Aa ) is also of type G(M, w, dom A) and IAOx dom Ac ? 
const. IIdomAIIdm + 

For the proof of part b) we observe first that in case of an analytic semigroup the 
representation (2.3) of en(t) is valid for x E domA1+6, 6 > 0. The integration by 
parts which leads to (2.2) can also be performed under the present conditions. We 
only have to observe that for an analytic semigroup we have T(T)x E domAk, k = 
1, 2, .. ., x E X and r > 0. Furthermore, we have to use the estimate IIA2T(r)xll = 

IIAl-6T(r)Al+6xII < const.Tr-1+6IT(r)Al+6xII, T > 0, x E domAl+6. 
We only have to consider the integral term on the right-hand side of (2.3), 

because for the other two terms and the term on the right-hand side of (2.4) we 
see immediately that, for E > 0, 

IIAx IdomkA < const. ||x |IdomA`+1, x C dom A'+', 

and 

|IT(t)Axl|domA <? MeT IAx|IdomAk < const.|IxIIdomA`+l, 

for x E dom A'+' and 0 < t < T. For the integral term we get the estimate 

t 

Tn(t-7)7rnAnAA2T(T)x dT- 

T 

<Me |T IIAn|IL(domAk-,X) IIA2T(T)xlldomA'tdT 

T 

<const. |A/n L(domA IIX) A' AAl?+T(T)x I I domA dT 

<const. |A/n |(domAc-,X) I -E A?E T(T)x I dom A dT 

< const. A| /Ln(domAR,X) XlX ldomrA?+l+E 

for x E domA'+?+?. With respect to properties of fractional powers of closed 

operators which have been used in this proof we refer to [11], for instance. DH 

In case of second order parabolic equations with a selfadjoint uniformly elliptic 

operator it was shown in [2] that we can take E = 0 in part b) of Proposition 2.2. 

Using basically the same ideas as in [2] we can prove an analogous result for analytic 

semigroups on a Hilbert space with arbitrary selfadjoint infinitesimal generator. 
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Proposition 2.3. Let Z and Xn be Hilbert spaces and assume that (Al), (A3) 
are satisfied. Furthermore, assume that A generates an analytic semigroup on X 
and that the An are selfadjoint bounded operators on Xn with the property that, 
for a A0 E p(A) n nn=I p(An), the operators An -oIn are dissipative, i.e., An E 

G(i, A0, Xn). Then the following is true: 

a) For any T > 0 and any a > 0 there exists a -y =y(T, a) > 0 such that 

I|EnTn(t)PnX-T(t)x ? | A<11/\n(A0) ||L(domnAa,X)1 X ldomAa+1 

for all t E [0, T] and all x E dom A'1. 

b) Assume that in addition statement (a) of Theorem 2.1 is true. Then for any 
6 > 1 and a > 0 there exists a ay = 1y(, a) > 0 such that 

IlEnTn(t)Pnx - T(t)xll <? 711 An(Ao) 11L(dom A0,X) lIX11dom A+1/2 

for all t E [1/86,] and all x E dom A+1/2. 

Proof. The general setting is as in the proofs of Theorem 2.1 and Proposition 2.2, 
respectivley. Instead of equation (2.8) we first define vn(t) = ten(t), which, for 
x E domAc, a > 0, satisfies 

Vn = AnVn + en(t) + tAn7rnAnAT(t)x, t > 0, 

Vn(0) = 0. 

By the variation of constants formula we get 
rt r~~~~~~~~~~t 

vn(t) = j Tn(t-)en(T) dT + j A T-(t - T>TF/AnAT(T)x dT, t > 0. 

Integration by parts in the second integral gives 

en(t) - Tn(t - T)en(T) dT-7rnAAT(t)x t J 

(2.10) + 1 Tn (t - 7)7rn A nAT(T)xdT 

+ t jTn(t - T>rnJn7AT2T(T)xdT, t > 0, x E domA. 

Observe that T17A2T(T)xll = TllA2-T(T)A%xll < const.Tr-+ Aacxll for x E 

domAc, which guarantees that the last integral in (2.10) exists. Analogously one 
sees that the other integrals also exist. From equation (2.8) we get, for x E dom Ac, 

en(t) = A-I1en(t) - 7rnAnAT(t)xc t > 0. 

Taking inner products with en(t) on both sides, observing that by selfadjointness 
of An we have 

ld 
Re(en (t) )An-Ien(t)) = t(en (t) ) An-'en (t)) n ~~2 dt n 

and integrating from 0 to t, we get 
t 1 1 jl en (7) 2dT = (en (t), An-en (t)) - Re j(en (T), 7rnA\n AT(T) x) dr 

2 j 
< 2 / lien (7)112 dr+ 2 1 l7rnA n AT (r) x112 dr, t > 0, 
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where we have also used dissipativeness of An. Consequently we have 

t ! t 
f I en (7) 2dT < f 7rnAnAT(T)xjj2d7, t > 0, x E domA. 

From this we get 

(2.11) 

11t l; 1n(-)n()d |<-(j |n()| d)/2 (J le()ll2r/2 

K MMt-1"2e'' A7j ll\ L (dorn A ,x ) (fi t(7 dornAcT) ; >7 0. 

In order to prove part a) we choose x e domA'>?l. Then IAT(T)x ldomAa 

MeIWIT lx ldOm A+?I which shows that 

1 t jT(t--T)en(T)dT <o dnst A| 7 (doAQ11X) d ||dom A7ld 

forte [0, T] 
The second and third term on the right-hand side of (2.10) can easily be esti- 

mated by constj |An||L(doinAc>,X)~ lX dornA<>?1 for all t e [0,T] and x e domA+?l. 
For the fourth term we get 

| 

|J 
a nk (- T)7ThnAThTA2T(T)X dT|| 

<const. A1 tL2(domAclIX)I f AT T(T)X7donA11dT 

< const.j||mAn dom(domA,Xj j T(T)Axado A t> T 

< const. || An||(dornA'>,X)||X~ |dom A<?1 

for 0 < t < T and x e domA+?l. 
For the proof of b) we choose x e domoAm/2 and observe first that selfad- 

jointness of the Al together with (a) implies that also A has to be selfadjoint. 
Consequently we have 

gAT(T)X ldorATt =T)AT(T)X d2 ? cnAT(T)Anx X2 

d KT(T)A"2x, T(T)A1/2x) 

? d5 KT(T)Ao?1/2x, T(T)A08?1/2x), T ? 0, 

and consequently 

1 t~~~~~~ 

101 AT(T ) nn don -AdT ? | T(t)A / X donAc < const x domA?l/2 t > 0. 

This and (2.11) prove that 

II-1 fT( - T)e (T) < dT cns nst.nIjIdA(X d ITA\ 7-x)AlxldomAd?1/7 
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for all t E [1/E, &] and all x G domAc+12. For the other terms in (2.10) we get the 
analogous estimates if we observe 

rt ot 

/jfAT(7)xlm do < const.flA1/2X ldom A j7-1/2dr) 

t ~~~~~~~~~t 
jTIA2T(T)xfldomAadr jT HIA3/2T(T)A/2XlIdom A,dT 

t 
< const.||A1/2Xldom Aa j 1/2dr 

for t E [0, 6]. 

Rema,rks. 1. Note the difference in the two statements of Proposition 2.3. The 
first one requires x E dom A'+l but gives an estimate on intervals [0, T], whereas 
the second one requires x E domA'>+l/2 only and gives an estimate on compact 
t-intervals which exclude t = 0. The assumption, that the consistency property (a) 
is satisfied, in part b) is only used in order to prove that A is also selfadjoint. 

2. Without restriction of generality we take the setting used in the proof of Propo- 
sition 2.2 and set (note that A, = A1 - An-) 

F(n) = ||/n |L(domA'-,X)- 

This means that for any x C dom Ac we have 

(2.12) IIA-lx - Aw 7nXIl < F(n)flXfldomAa- 

If we observe that u = A-lx resp. un = A-17rnx are the unique solutions of the 
steady state problems 

Au - x resp. AnUn = 7inx 

we can rewrite inequality (2.12) as 

(2.13) flu - Un flu - qnull < F(n)flAulldomA- < F(n)flUl|domAo+1. 

Therefore Proposition 2.2, a) can be stated as follows: If the estimate (2.13) is 
true for an approximation scheme for the steady state problem Au = x, then we 
have the same rate estimate for the corresponding approximation scheme for the 
Cauchy problem it Au, u(0) = x, provided x E domA'+2 (i.e., x E domA and 
Ax E dom A'+'). This shows that the results of this section are closely related to 
results in [10]. For instance, the assumption that the estimate (2.13) is satisfied is 
exactly the assumption in [10] that "Theorem T" is true for X = dom Ac'+l (see 
[10, p. 130]). Proposition 2.2, a) essentially is Theorem 4.2 in [10] with the differ- 
ence that in [10] the estimate is for Tn(t)qnx - T(t)x instead of Tn(t)7rnx - T(t)x. 
Furthermore, the results of this section show that the smoothness assumption 
x E dom Ac+2 can be relaxed considerably. In case of general analytic semigroups 
in Banach spaces we need x E dom Ac+?+c (Proposition 2.2, b)). If in addition we 
assume that the spaces are Hilbert spaces and the generators are selfadjoint, then 
x E dom A'+' resp. x E dom A'+ 1/2 is sufficient (Proposition 2.3). 
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3. How TO ESTABLISH STABILITY AND CONSISTENCY 

In order to apply Theorem 2.1 one faces the following major difficulties: 
a) In general it is very difficult to verify the stability property, i.e., to prove that 

An E G(M,w,Xn), n = 1,2,..., for some M > 1, w E R, when M > 1 is 
necessary. 

b) Direct verification of the consistency property (a) involves computation of the 
resolvents (AIn - An) -1 which in general is almost impossible. 

Of course, the Hille-Yosida generation theorem for Co-semigroups tells us among 
other things that An E G(M, w, Xn) if A E p(An) for Re A > w and 

II(An-Aln) kll < (RA)k ReA > w, k = 1,2,... 

But to establish these inequalities for the powers of the resolvent operators in par- 
ticular for the approximating generators An is in most cases (i.e., except M = 1) 
impossible. In general, the only way to verify the stability property is to use dissipa- 
tivity estimates possibly after renorming the spaces Xn with uniformly equivalent 
norms. 

Concerning the consistency property one tries at any case to avoid computation 
of the resolvent operators (AIn - An)-1 and direct verification of condition (a). 
Usually it is very easy to compute explicit representations of the approximating 
generators An. Therefore one would like to replace (a) by a condition involving 
convergence of the operators An to A in some sense. The following result is well 
known, the proofs perhaps are different (see for instance [11]): 

Proposition 3.1. Let the assumptions of Theorem 2.1 be satisfied. Then state- 
ment (a) of Theorem 2.1 is equivalent to (A2) and the following two statements: 

(Cl) There exists a subset D c domA such that D = X and (Aol - A)D 
- X for a A0 > w. 

(C2) For all u E D there exists a sequence (-Un)nCN with Tun C dom An such that 

lim ErtuTn = u and lim EnAnUn = Au. 
n-*oo n-*oo 

Proof. Without restriction of generality we can assume A0 = 0 for the proof. We 
first prove that (a) implies (A2) and (Cl), (C2). To this end we first set D = domrA 
which implies AD = X, i.e., (Cl) is satisfied. In the proof of Theorem 2.1 we have 
already shown that (a) implies (A2) (compare (2.4)). 

We next fix u E domA, choose x E X with u = A-1x and set un = A-'PnAu. 
Then we have 

- u - F_A1~~~~~~~~~~~~~~~~~~P x - A1lx --0 EnUn -U = EnAn lnxAl ,O 

as n - oo by (a). Furthermore, we have (using (A2)) 

EnAnUn - Au = EnAnA-1Pnx - AA-1x = EnPnx - x 0 

as n o oo. Thus we see that (C2) is also true. 
In order to prove that (A2) and (Cl), (C2) imply (a) we use the identity 

(3.1) EnA-Pn - A-1 = En(A-PnA - Pn)A-1 + (EnPn - I)A-1. 

For x E AD we choose u E D with x = Au and set un _ A-1Pnx = A-1PnAu. 
Furthermore, for u, we choose ut according to (C2). Then we get 

iiun PnUlln = IlPn(EnUn -U)|n < MlllEnUn-Ull ' ? 
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as n r-* oo and 

I-Un-Un?lln < IIA1-7I IlAnnU-PnAulln 

<IA2-7I IlPnll IEnAnUn - Aull -* 0 

as n r-* oo. Note that IIAn-'I is uniformly bounded, because An E G(M, w, Xn) for 
all n. The last two estimates prove that 

|lPnU-Unlln < lPnU -Unlln + UmU -Unlln -* O 

as n - oo. This estimate together with (3.1) and (A2) implies 

IlEnAn-Pnx-A-1xII < IIEn(Un PnU) II IEnPnU-Ull 

< M21 UnPPnUlln + IIEnFPnU-Ull -* 

as n - oo for all x E AD. A density argument finishes the proof for (a) (note that 

IIEnA-1Pnm is uniformly bounded). D 

Remark. In fact, conditions (Cl) and (C2) provide a formulation of the consistency 
property which is essentially the original one. See for instance [12, Chapter 3] for 
difference approximations. 

The example in Subsection 4.1 below demonstrates the usefulness of conditions 
(Cl) and (C2). However, in many applications, in particular if the abstract Cauchy 
problem is the abstraction of a PDE-problem, the generator A is defined via a 
sesquilinear form a, which is given on a densely and continuously embedded sub- 
space V of the state space X. Then the approximating generators An usually are 
defined by sesquilinear forms Un on the approximating state spaces Xn. These 
sesquilinear forms Un are obtained from restrictions of a to appropriate subspaces 
Vn of V which are isomorphic to Xn. Of course, in such a case one would like 
to establish the stability and consistency property by using the approximating 
sesquilinear forms Unm Instead of formulating some general results in this direc- 
tion we demonstrate the ideas by the examples in Subsections 4.2 and 4.3. The 
main reason for this approach to the problem is the fact that usually one has to ex- 
ploit the special structure of the problem under consideration, which makes it very 
difficult to provide simple general conditions which cover a wide range of special 
cases. 

Parabolic problems allow much stronger results, which will be presented in a 
different paper. 

4. EXAMPLES 

In this section we demonstrate applicability of the results developed in the pre- 
vious sections. As already mentioned in the introduction the goal is to show that a 
variety of concrete situations is covered by the general framework presented in this 
paper. 

4.1. A first order hyperbolic PDE. In this example the role of the operators 
Pn and En appearing in conditions (A1)-(A3) and the usefulness of Proposition 3.1 
are demonstrated. Consider the first order hyperbolic P.DE 

(4.1) ,9au(t, x) + au(t, x) = 0, x E (0, 1), u(t, at = OX 
U(tj 0) =0. 
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The equation is studied in three different state spaces: X = L1(0, 1), X = L2(O, 1) 
and X = Co(0, 1), respectiyely, where Co(O, 1) is the space of continuous functions 
on [0,1] vanishing at x = 0. It is not difficult to show that the linear operator A 
defined by 

AO =-0', 0 E domA, 

with dom A { e X b is absolutely continuous on [0,1] with q' E X and 
b(0) = O} generates a Co-semigroup on X. The numerical method analyzed here 

is the first order finite difference scheme 

d.Uk 
(t) Uk_1(t) 

- 

Uk(t) 
k n, 

(4.2) dt Ax ' 1. uo(t) = O, 

where col (Ul.. , U.) E Xn?= Rn and Uk(t) represents an approximating value for 
u(t, x) at the k-th nodal point Xk= k Ax with Ax = 1/n. From equations (4.2) it 
is clear that the approximating generators An on Rn are given by 

(Anu)k (uk1-uk), 
k n, 

where we set uo = 0. 

Case 1. X = L (0, 1). 
Let Pn, En and 11 llnbe defined as 

n 

EnU = E UkX(xk-l,Xk], U E XnC 

k=1 

(Pn))k=Ax ?(x) dx, 1 < k < n, X EX, 

n 

I|U|In = AXZE Ukl, U E Xn- 
k=1 

It is easy to show that the conditions (A1)-(A3) are satisfied. For an element 
u E Xn \ {O} the elements v in the duality set Fn(u) C X* are given by 

v = /\X||U||ln(atl, -an), 

where ak = sgnUk if Uk :4 0 and lakl < 1 if Uk 0. Then it is easy to see that 

(Anu,v) < 0 for all v E Fn(u), 

which establishes the stability property. 
In order to verify the consistency property we choose D = domA A{ C 

C1(0, 1) I 9(0) = O} which establishes condition (Cl) in Proposition 3.1 with w 0. 
For u E dom A we define uin E Xn by 

(4.3) Un = col (u(xI), U(Xn)). 

Then simple computations show that 

|En n -U UL1 < \X ||UL1 

which proves limn,O EnUn u. 
Furthermore we have 

A1 XJ X 

IlEnAnun - AuILl < AxE I U/(T) - u/(u)I du dT < (U'; A X), 
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which proves lim,,O EAn,up = Au. Here h -* w(u'; h) denotes the modulus of 
continuity for u'. Consistency now follows from Proposition 3.1. 

Case 2. X = L2(0, 1). 
Let Pn, E, be as in Case 1 and be given by 

n 
IUI12 xZ AX 2 uX 

|||n = : /\ Ukl I U (E Xn- 

k=1 

In this case the inner product on Xn is defined by (u, v) = (EEnu, EnV)L2. Then 
stability is obvious from 

n 
(AnU,u)n = S(Uk-lUk - |Uk 2) <0O, U X. 

k=1 

In order to verify consistency let D = dom A and define uin by (4.3). We have 
n rXk Xk 2 

IEEnun -U lL2 < iJ (J u'(a) d)dT 
k=1 Xk-1 T 

n XSk Xk 

< I (Xk - T) j u'(I() 2d1u d- 
k =1 k-1T 

n Xk 1J 

= E I UI(a)12J (Xk -T)dT du 

< jE! I uI(a) 12du (AX)2 
- 
(AX)2 IJU 112 

k=l Xk-1 

which tends to zero as n - oo. Concerning Anun we have 

( /\ nJA 2 (Jk )XJ_(JZk 2 dc) 

xAX/)klJk- Jkk-1 

<w(U/; AX)2 _* 0 

as n - oo. This finishes the proof of (C2) in Proposition 3.1. 

Case 3. X=Co(0,1). 
Assume that Pn, En and 11 ln are defined as 

n 

EnU = EUkBk(X), U Xn, 
k=1 

(Pn(,))k = 9(Xk), I < k < n, X, 

IlUlIn = nleaX jUkl, U C Xni 

where the first order B-spline Bk(X), k = 1,..., , for 0 < x < 1, is given by 

[n(x -Xk-1), X [Xk-I IXk], 

(4.4) Bk(x) - 4n(xk+l - x), x C [Xk, Xk+1], 

10 otherwise. 
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Obviously, assumptions (A1)-(A3) are satisfied. For (A2) one has to observe that 
E,P,u is the first order spline interpolating u at the meshpoints. 

For u E X, the elements v E F,(u) are given by 

llullsgn ui for k = i, 
Vk 

? for k # i, 

where i is an index such that Iui I = maxk jUk 1. Then it is easy to see that (A,u, v) < 
0 for all v E F,(u), i.e., the stability property is satisfied. 

For the consistency property, we again choose D = dom A and u-h C X, for 
u C dom A as in the previous cases. Then we have 

lim IlEnun -ullKc = 0, 
n-*oo 

because Enun is the first order spline interpolating the continuously differentiable 
function u at the meshpoints. Moreover, we get for numbers ,k C (Xk-1, xk) the 
estimate 

IEnAnun -AuIIo- = 11kE A1xU ?Bk +BU'l = IIU'- U'( BkI 
k=1 k=1 

n 

< U'-EU'(Xk)Bk I0+ max U (Xk)-U (W I 

k=1 '= ' 
n 

< |UZu' (Xk)Bkll,o+W(UA;/X)-3 O asn3-*oo. 
k=1 

The first term on the right-hand side tends to zero, because k u'(Xk)Bk is the 
first order spline interpolating the continuous function u' at the meshpoints (note 
that u'(0) = 0). This finishes the proof for (C2). 

4.2. A second order wave equation in one space dimension. This example 
demonstrates how to use sesquilinear forms in order to prove stability and consis- 
tency of approximations. We consider the wave equation 

(4.5) &a2u(t,x) = X2u(t,x), 0 < x < 1 

with boundary conditions 

u(t,0) = 0, 

k, au(t, 1) + 
a 

u(t, 1) = 0, k > 0. 
k-at 

k>. 

Defining z1 u and Z2 = one can write (4.5) as the system of first order 
equations 

(4.6) 09 (Z2) (? 0) (Z2 

with 

zi (t, 0) = 0 and kz2 (t, 1) + a zi (t, 1) = 0. 
ax 
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a) Well-posedness of the problem. Let the Hilbert space V = { e H1(O, 1) I (O) = 

O} be equipped with the norm 111= (f= q$' 2dx)i/2 and set Z = X = V x L 
(L2 = L2(0, 1)). The linear operator A on X is defined by 

domA= {(01,q02) EX JI 01 EH2(0,1), 2 E V and kO2(1) + 01(l) = O}, 

A(011,02) = (02, ' ') for (X1,902) E domA. 

It is easy to verify that A is m-dissipative and thus generates a Co-semigroup on 
X (note that A is densely defined, because X is a Hilbert space). 

For ?) (X1,02) E domA and +b (=b1, fb2) C X we set 

o9(0, 'b) (A?,, b) =(?)2, b1l) V + (X/1/, 2) L2 

j 
= (02V I + 0/1/'02) dx. 

If also +b2 C V, then we can integrate by parts and obtain (using also the boundary 
condition at x = 1) 

(4.7) oj95,4,6) j -8 (?)5g61-? 44g6b) dx - k02(1)>b2(1). 

This equation makes sense for all 0,X6 E V = V x V. Trivially V is densely 
embedded in X. We define the sesquilinear form u: V x V -* IR by (4.7). It is not 
difficult to see that X E V is in dom A if and only if Iua (0, ') < K(95) 4' x for all 
4'eV. 

b) The approximating spaces. We consider a mixed finite element method and try 
to approximate solutions of (4.6) by 

n 

Zn$) (t,x) - Zai (t)Bi (x), 

(4.8) i= 1 n 

zn2) (t, x) = Z!3i(t)Si(x), 
i=l 

where xi = i/n, i O,... ,n, Bi(x) are the first order B-splines defined by (4.4) 
and Sit ) = 2X(xi-,xi+,)n(oi) for i 1,... , n. We define Xn = Vn x Hn, where 

n 

Vn ={ E V I o ZiBi, oai E R}, 

i=l1 
n 

Hn = {X6E L2 | Z=3iSi, pi E R}, 

i=l1 

are equipped with the inner product induced from V resp. L2. As projections 
X -* Xn we choose the orthogonal projections Pn (pnl) Pn)) and set En = Pn* 
i.e., En is the canonical injection Xn -* X. Obviously, assumptions (A1)-(A3) 
are satisfied. Since Pn1) is the orthogonal projection V -* Vn with respect to 

the V-inner product, it is easy to see that, for f E V, Pn1)f is the first order 
spline which interpolates f at the meshpoints xi = i/n, i = 0, . .. , n . Note that 

f(O) = (Pn )f)(O) = 0. 
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c) The approximating operators. Since Xn is not a subspace of V, we cannot define 
a,, to be the restriction of.ca to Xn. However, Dn = Vn x Vn is a subspace of V, so 
that we can define the sesquilinear forms D, Dn x D -* IR by&n I c DnxDn 

Moreover, the spaces Dn are isomorphic to Xn, an isomorphism in Dn 3 Xn 

given by 

in(u,v) = (u,1P()V) for (u,v) C Dn. 

A simple computation shows that 
n n 

Pn' )- S: jSi for q Y e-iBi E Vn 
i=l ~~~i=l 

We define the sesquilinear forms Un Xn x Xn by 

Un(X,Y) y= n(in [X,) in in ny), X,y C Xn, 

and the approximating operators An by 

(AnX,V) = Un(X,V), XVE Xn. 

From this it is easy to compute the matrix representations for the operators An 
with respect to the bases B1, ... ,Bn of Vn and S1,... , Sn of Hn. Let 

n n n n 

x= (SoiBi,S!iSi) and AnX= (EZyiBi,S8iSi). 
i=l i=l = = 

We set a = col(al.... ,on), 3 = col(31,. ...,.n), -y = col('y,.y,Vyn) and 6 

col (k,... ., Sn). Then simple computations show that 

(4.9) Qn6 =-Hna - Fnf3 and =, 

where 

2 1 0 0' 0 2 -1 0 '0 

1 2 . . .-1 2 

Qn = 41 2 1 , Hn= n 0 

. 1 O 2 -11 

0.. 0 11 ... 0-1 1 

Fn= .I. 
o o 

We note that the matrix 

0 In 
(Q2H -Q-1F) V-Qn- Hn -n-ln 

is nonsingular, which follows from detQn #4 0, detHn # 0. This in particular 
implies 0 C p(An)I n = 1, 2, ... 
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d) The stability property. For x e X, we have 

(A,x, x) = u,(x, x) = u(i-lx, i-lx) < 0 

by (4.7), i.e., An e G(1, 0,Xn) for all n. 

e) The consistency property. We have already shown that 0 e p(A) n nnI=1 p(An). 
For (f I g) e X let (u, v) = A- 1(f, g) and (un, vn) = A - 1 Pn (f, g). FRom A(u, v) = 

(v,u") = (f,g) we conclude v = f and (u0, /) = (g, b) for all 6b E V. Integration 
by parts and (u, v) e dom A imply 

(4.10) -u',)= (g,gb) + kf(l)b(l) for all 4, e V. 

We next derive an equation analogous to (4.10) for the approximations. By 
definition of the An we have, for arbitrary (*4)i5 E Xni 

(4.11) (Pn(f,g),Q(4,nifn)) = n = 

We define i5n,in b Vn by i-1(un,vn) = (unv,bn) and in-1(Qini'On) = (in5'n)i' i.e., 

Vn n2)vn and 4bn -n_ 2n From (4.11) with n =0 we obtain 

(Pn l)f, n)v =On(i3rw;n)v for all qn e Vn 

This proves Pn(l) f = V3n and consequently 
n 

= P 2)Pn ) f (= Zf (Xi)Si). 
i=l1 

Again using (4.11) we get (also using ni (1) = (Pnl) f ) (1) = f (1)) 

(4.12) -(unV - (Pn,n Pn )4n) + kf (1)>n(l) for all fn C Vn 

We choose un= Pn9j)u e Vn. Then we get from (4.10) with 4 = 4n and (4.12) 

- -Un? 4 n (Pn n Pn ) n) - (~9 n) 
(4.13) - (p(2)9 - g,pn2WTh) + (9' Pn ?+n-2 n 

= (9,P p fn - n- ), for all fbn I Vn 

Here we have also used (Ui, =4 (U, 46n) = (Pn1)u, g/n)p (i4, 449. Equation 
(4.13) implies 

(Un An)| < 1191?L2 sup n )n JL2 
Xn E Vn 

jj,Xnjj1CV <1 

for all rn ,E Vn with I| n I < 1. Taking fn = lUn- Un-I(Un - Un) we get 

(4.14) iiun-unj|? < 1191IL2 sup |n X n -XJL2 
Xn EVn 

By compactness of {X E V I IIXl ? 1} in L2 we see that the right-hand side of 
(4.14) tends to zero as n r-* oo. Thus we have 

(4.15) ||un - Unj||V 3- O as n -- oo. 

Since u C H2 and u_n = Pn)u is the first order spline which interpolates u at the 
meshpoints, we also have 

(4.16) iun -uj --*0 asn *oo. 
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Finally we get 

EnA-1 P(f1g) -A-1(f,g) 12 = (un,Vn) - (u,v),2 = (Unn Pnpf) n () 2 

= |Un-ui + n )n )-lL2 

< 21ju - Unllv + 21ju-n -UnlIZ + 21|Pn ')f- |2 + 211f - n )| 

From (4.15), (4.16), the fact that Pnl)f is the interpolating first order spline for f 
and that Pn2)f is the orthogonal projection of f onto Hn we conclude that 

IlEnAj-Pn(f,g)-A-'(f,g) -*0 as n 3 oo 

for all (f, g) E X. Therefore we see from Theorem 2.1 that, for all initial conditions 

(U(0, .), au (0,-)) E X) 

IIEn(zn1)(t, .), z$2)(t,.)) - (u(t, .),a (t, )) x -* 0 as n 3-* (x n ~~~~at 

uniformly on bounded t-intervals. The approximations Zn (t, x), n (t, x) are given 
by (4.8), where a (t) = col (a I (t),. . .,an (t)) and p (t) = col (31 (t),. . .,An (t)) are 
solutions of 

dao 

dt 

Qn do -Hn?a-F n dt 

with initial data a(O), /(0) determined by 
n n 9 

( ai(O)Bi, i()Si= Pn (u(0, t ( ,)) 

4.3. Stokes equation. This example demonstrates that it is useful to consider 
situations where X is a closed proper linear subspace of Z, because it can be very 
natural to choose the spaces Xn as subspaces of Z but not of X. Consider the 
homogeneous Stokes equation (e.g., see [14] resp. [4] for the stationary case) 

ut + gradp = Au, 

(4.17) divu = 0, x E Q, t > O, 

u IF= O, t > O, 

where Q is a connected bounded open set in RN, N = 2,3, with Lipschitz continuous 
boundary F. Of course, A denotes the Laplacian in RN. 

a) Well-posedness of the problem. We shall consider solutions of (4.17) in a weak 
sense. We introduce the following spaces (see [4], [14]): 

V= {v E D(Q)N I divv = O}, 

V = closure of V in W Hol(Q)N, 

X = closure of V in Z L2(Q) N. 

Equivalently the spaces V and X can be defined as V = {v E W div v = 0} and 
X = {v E Z j div v = 0}, where the derivatives are understood in the distributional 
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sense (see [4, Corollary 1.2.5 and Theorem 1.2.8]). On W we introduce the inner 
product 

N 

u(v,w E j gradvi.gradwidx, v,wEW, 

which is equivalent to the standard inner product. Of course, V and X are equipped 
with the inner products coming from W resp. Z. Furthermore, V is dense in X 
with continuous injection. The inner product o(., ) and therefore also its restriction 
to V x V satisfies the estimates 

U(u,v)1 ? llullvllvllv, u,v E v, 

(4.18) ~ ~~~ (u, u) = llv,uEV 

which show that oa is bounded and coercive. Therefore the operator A defined by 

domA ={u E V I there exists a k = k(u) such that 

lo(u,b)l < kllj/llx for all 0 E VI) 
(Au, -u(u, ,6), u E dom A, 0 E VI 

is the infinitesimal generator of an analytic semigroup T(.) on X and, moreover, 
0 E p(A). The operator A is explicitly given by 

domA = V n H2 (Q) N, 

Au =7r/u, uEdomA, 

where 7r is the orthogonal projection Z -* X (see also [16, Section 111.1]). In 
order to define the approximating generators we shall use the following variational 
formulation of (4.17) (see [4] for the stationary problem): 

d 
(4.19) -jK (u(t) Z -u(u(t, .), ')) + b(4, p(t,.)), t > 0, c WI, 

b(u(t,*),,a) = O, t > O, L2(Q) I 

where Lo(Q) X E L2(Q) I f0xdx = 0} and 

b(v, p) j / divvdx, (v,,p) E W x L2 (Q). 
Q~~~~~~~~~~ 

Note that "grad" is an isomorphism from Lo(Q) onto {y E H-1(Q)N (y, v) = 

0 for all v E V} (see [4, Corollary 1.2.4]). 

b) Setting of the approximation framework. For linearly independent elements q5 E 

H Q)N, i = 1, .. ., kn, and ,4 E Lo(Q), i = 1, ..., mn, we define the spaces 

W~=span(b, ...,q$fn Hn =span (itn'...,,un Wn = span (01 ... ?kn )P n=san(2 m) 

and the subspaces VI/ of Wn by 

Vn = { E Wn I b($, u)- 0 for all At E Hn} 

equipped with the V-norm. Furthermore, we define Xn to be Vn equipped with the 
L2(Q)N -norm. Note that neither Vn is contained in V nor is Xn in X, because Hn 
is a proper subspace of L2 (Q). 
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Let Pn be the orthogonal projection Z -* Xn and En be the canonical injection 
Xn -* Z. Then obviously (Al) and (A3) are satisfied. The sesquilinear forms an 
and the operators An are defined by an = ar Iv v and 

(An X, y) =-n (X, y), x, y (E Xn. 

Since (4.18) is also true for n+, we conclude that 0 E p(An), n = 1, 2, .. ., and 

(AnX,x =-X xx) =lxlv ' ,x 

which establishes the stability property. 

c) The consistency property. We impose the following conditions on the spaces Wn 
and Hn: 

(i) For all u e V there exist elements wn C Wn, n = 1, 2, .. ., with 

(4.20) u-wnllw --* 0 as n -*oo. 

(ii) The uniform inf-sup condition (see [4]) is satisfied, i.e., there exists a constant 
p3> 0 such that for all n 

(4.21 )sup b(w un) 
> /1 IIL2 (Q) for all Lln C Hn 

(4.2) w,CWn \{O} lWbnCIW 

We identify Wn and Hn with their duals and define the operator nI : Hn 
Wn* = Wn by 

Tnttn Wn) w = b(wn t n), wn e Wn, p[n E Hn. 

From (4.21) we get 

VIIn/-tnil|W sup (@I TUTh,WTh)V - sup 
(4.22) WnGWn\\{0} WlWniw twnVVn\{0} WlWnllW 

>_ II-nL2(Q), tn E Hn 

This proves that In is injective. The dual operator TI': Wn -* H?n is given by 

n*Vn = b(Vn ')v, vne Wn. It is easy to see that kerIT = Vn. Thus we have 
range n = (ker In) =Hn and range n = (ker I ) ' = VnL'. Thus T* = IV 
is a bijective mapping Vl -* Hn (see also [4, Lemma 1.4.1]). Moreover, B* is the 
adjoint of n : Hn 3-* VnL defined by Bn/-ln = 1nI1n, ?2n bE Hn. For the norms of Bn 
and B we get 

L~~rj I(H~,1Q-) - sup b(Wn,,,un) 11 nI11IL(HnY V1 ) 
= 

l n I (v n) ,bEHP 1U 1L Q n1 
pAncHn\{O} IIPn L2 (Q)fIlWnillW 
WnGv' \{?} 

Therefore it follows from (4.22) that 

(4.23) ~II(_n) 'IIL(HnY,71 11 n nI(1H) < 
O' 

Given Wn e Wn and u e V we define f C Hn by (f, tn)L2(Q) = b(u-Wnr,,pn) for 

all btn E Hn. We set Zn = (B)-1f E V$L. This implies 

(nZnr /tn)L2(Q) = b(Znr tn) = (fi /tn)L2(Q) = b(u-wrn, qn), Pmn C Hn. 
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Moreover, (4.23) implies 

IIZnII I p (Q) UcHn\{O} f i tnL2(Q) 

1 p b(u-Wn, ,un) 1 
SUp <-~~~~~lbl U- tWnmIW, 

AncHn\{O} IInII L2 (Q) - 

where llbll = suPvCW\{O}/,uL2(Q)\{O} b(v, 8) 1 . The element Vn Wn + Zn 

satisfies (note that u e V) 

b(Vnm, tn) = b(Zn, Atn) + b(Wnm, tn) = b(u - Wn, tm) + b(Wnm, tn) 

= b(u, Atn) = 0 for all tn E Hn, 

i.e., vn e Vn. Therefore we have 

IIu-vnrjw?<fllu-Wn W-+Klzn||w< (1+ llbl )Iu-wnr|w. 

This and assumption (4.20) imply that for all u e V there exist vn e Vn such that 

(4.24) lim IJU - Vn jw = ?O 
n-*oo 

Let 7 e X be given. Then by density of V in X there exists a sequence (vk) in 
V with II - Vk I z -* 0. By (4.24) there exists for each Vk an element Vk E Vk such 
that IVk - Vk I ? 1/k. But then I0 - Vk z -* 0 and consequently 

(4.25) lim | - Pn7| lZ = 0 
n-*>oo 

(note that Xn = Vn as sets). This also proves (A2). In order to establish the 
consistency property we first observe that 0 e p(A) n nn=i P(An). For 75 e X we 
choose u E domA such that 7 Au and set Un = An1Pnm C Xn. For u we choose 
vn C Vn, n = 1, 2, .. ., such that (4.24) is true. By definition of A and An we have 

OL(U, Un - Vn) = (7, Un - Vn)Z, 

U(Un, Un - Vn) = (Pnmi Un - Vn)Z 

and consequently 

O(Un - V9nm Un - Vn) = c(U - Vmn Un - Vn) + (Pnm O-?) Un - Vn)Z. 

Observing (4.18) we get 

llUn - Vn 11W < IU - VnIl|wIl|Un -Vn ||W + |lPn?,?| OIZ |Un -VnIl|Z 

< lUnW-?Vn 1 W IUmm- W + KPqPn$q-$ z)m, 

where K is the embedding constant for the embedding W -* Z. This together with 
(4.24) and (4.25) implies 

(4.26) lim |Unm-VnmW = W ? 
n-*oo 

Using the definitions of u and Un we see that 

IIA-10 - EmA71Pnm w = IU- UnmlW 

?< IlUn - WVn|W + |U- VnIW * 0 as n -*oo 
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by (4.24) and (4.26). This in particular implies that the consistency property (a) 
is true. By Theorem 2.1 we get 

lim JIlTn (t)Pno - T(t)?011lz = O 
n-*oo 

uniformly on bounded t-intervals for each 0 e X. 
In order to see how one computes Tn(t)Pn95 set bn = (o$jn.... ,n ), Mn _ 

(1n7,..., mn ) and assume that un (t) = (hnaon (t) together with Pn (t) = MnOn (t), 
an (t) C R'n, On(t) e RRmn, solve 

dt (WXn (t) 00fn) Z = -07 (UXn(t) , 0n) +b(tJnivPn (t) ) t> O, 

(4.27) b(un(t), n) = O t > O 

Un(0) = Pn?5 

for all fbn e Wn and 11n e HnI. The second equation in (4.27) implies that un(t) E 
Xn, t > 0. If we take bn e Xn, then b(gbn,pn(t)) 0 O and (4.27) implies 

d 
dt Un (t), i ~n) Z= -07 (Un (t) i ibn) = (Anun (t) , 'bn) z i t > O0 

Un(0) = Pn?5 

for all fbn E Xn or, equivalently, 

un(t) = Anun(t), t > O, 

Un(?) = PnOb 

This proves un(t) Tn(t)Pn95 t > 0. Equations (4.27) imply that an(t) and On3(t) 
satisfy 

Qn&n (t) = -Snan(t) + BnOn3(t), t > O0 

(4.28) en (t)T Bn 0 t > 0 

where 

Qn = (lon 6))) Z 1f Sn = IC(liv6)) k ik 

i,k=1,.i.1. 
Bn = (b(?>n I Pun)) i= k, 

From (4.18) it is not difficult to conclude that rank Bn = mn < kn. The second 
equation together with the first equation in (4.28) implies 

0 = B T&n (t) =-B TQ-1Snoan(t) + B TQj-Bnfn(t), t > O. 

Because of rankBn = mn, the matrix Rn := BjTQn-Bn is positive definite and 
therefore R-1 exists. This implies 

(4.29) On3(t) = Rn-1 TQ-1 Snan(t), t > O. 

Then the first equation in (4.28) gives 

(4.30) &n(t) = -In- Q 1BnR-1BT) QlSm (t), t ? 0. 

An easy computation shows that (aO )TBn = 0 implies anm(t)TBn 0, where arn(t) 
is the solution of (4.30) with initial value aon 
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Remark. As already mentioned above we can prove stronger results in case the 
semigroup is analytic. Using the parabolic character of this problem one can show 
that 

lim I lTn (t)Pno ?- T(t)0X lW = n-*>oo 

uniformly for t in ilitervals [1/E, 8] for arbitrary 6 > 1. 
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